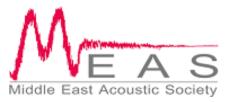


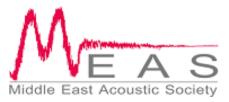
Quarterly meeting technical presentation:


Mechanical Properties of Elastomeric Vibration Isolators

• Ryan Arbabi CEng BSc (Hons) MIOA

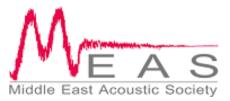
Technical Director – Farrat Isolevel Ltd

7th June 2018

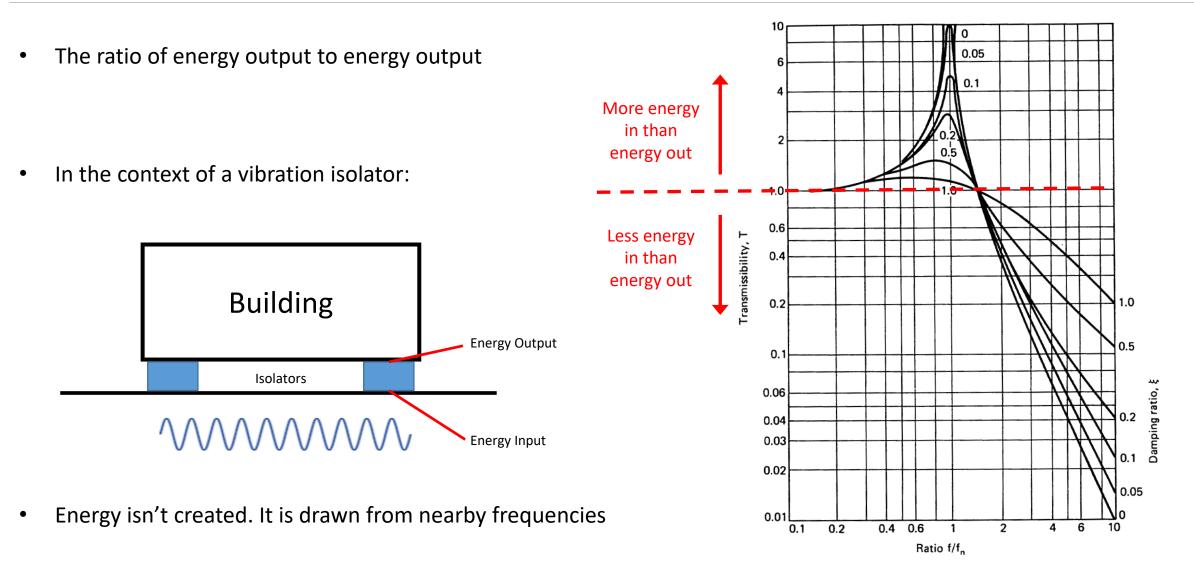


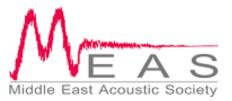
Introduction

- Ryan Arbabi CEng BSc (Hons) MIOA
 - Technical Director at Farrat UK
 - One of less than 200 Chartered Acoustic Engineers in the world
 - 10+ years of experience
 - Member of the Institute of Acoustics Editorial Board
 - Secretary of the UK Groundborne Vibration Working Group
 - STEM Ambassador

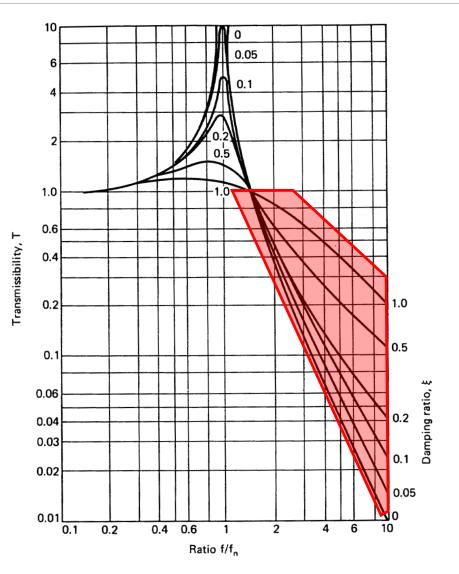

• *G*Farrat

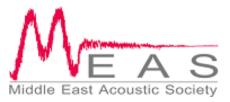
- Vibration Isolation
 - Materials Science
 - Mechanical Engineering
 - Structural Engineering
 - Acoustic Engineering and Dynamics
 - Construction Engineering / Industry Focused
- Building Isolation
- High Performance Sound Insulation




Summary

- Acoustic Terminology
- Isolator Properties
- Practical Examples
- Why is this Important?



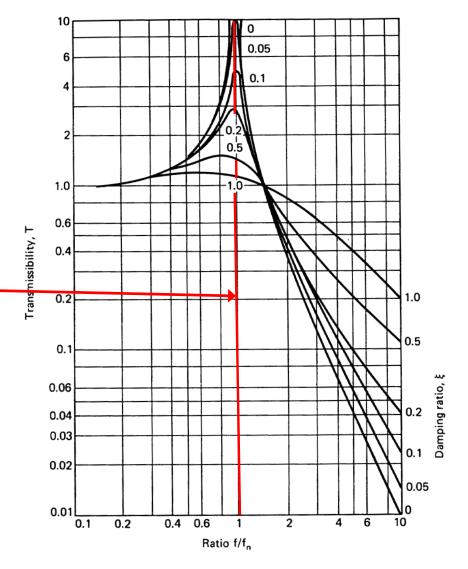


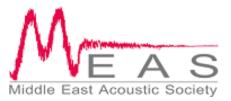
- The vibrational energy output (at a given frequency) is less than the energy supplied
- Amplification occurs when there is more vibrational energy (at a given frequency) than is supplied
- The reduction of the magnitude of vibration is caused by:
 - Mechanical work = heat
 - Decoupling the system (impedance mismatching)
 - Energy is rearranged so that the inertia opposes the force

Resonance

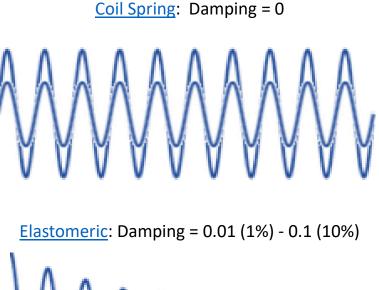
Quarterly Meeting Technical Presentation

- Every material has a natural frequency (f_n) with associated harmonics
- Structures contain multiple natural frequencies & harmonics
 The lowest or "fundamental" natural frequency has the most energy
 Harmonics have lower energy but can coincide with structural natural frequencies
 Walking = 2Hz Harmonics at: 4Hz, 8Hz etc.
- **Resonance** occurs when the disturbing frequency (f_e)

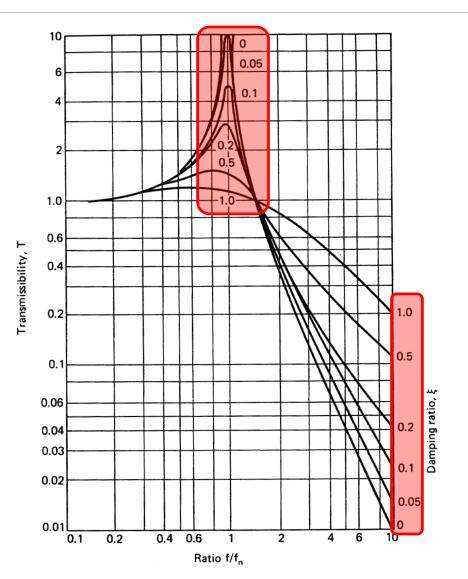

 f_n (the natural frequency) of the supporting structure i.e. ratio of $f_e/f_n = 1$

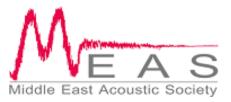

- Transmissibility > 1 = 1 transmitted vibration (and possibly amplified)
- Tuning can eliminate resonance amplification by changing a system's

 $f_{\rm n}$ so that it $\neq f_{\rm e}$

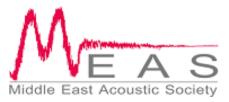

Mass: f_n is proportional to the stiffness divided by the mass 2 x mass = $\frac{1}{2}$ x vibration

Stiffness: Stiffening a part will $\uparrow f_n$




• Reduction in amplitude over each consecutive oscillation

• Damping reduces the effects of resonance



Stiffness

- Static Stiffness
- A material's rate of deflection under applied load
- How 'squashy' it is

- Elasticity
- Measure of a material's ability to resist a compressive force
- More specifically a materials ability to return back to it's
- Primary mode of failure
- You can have Stiffness without Elasticity
- Elasticity is where vibration isolation comes from

- Dynamic Stiffness
- Stiffness under a static load usually isn't the same as stiffness under a dynamic load
- This is known as the:
 "Dynamic to Static ratio"
- DSR = 1 for coil springs
- = up to 2 for rubber
- = 3 4 +for recycled rubber

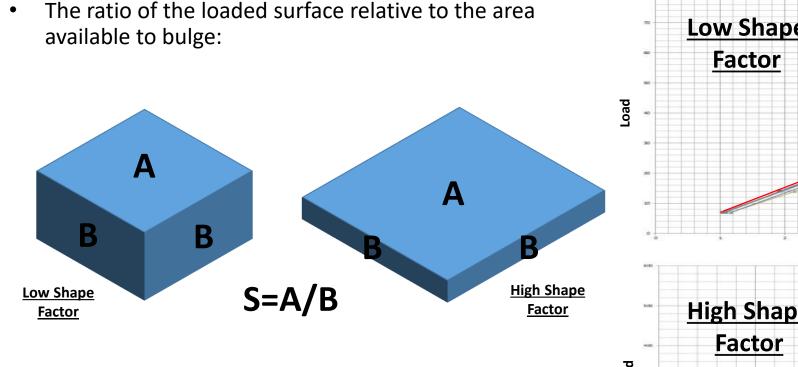
Vibration Control

- Not all about Isolation
- Avoid Resonance at all costs!
- Lowest possible Stiffness isn't always the best
- Highest possible Damping isn't always the best

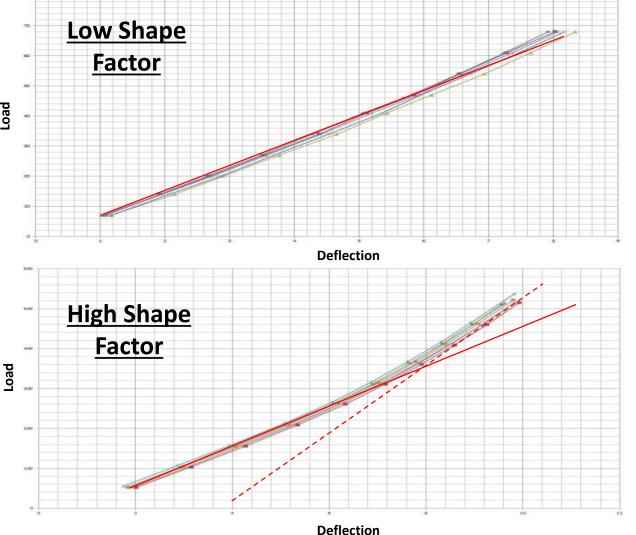

- Load Bearing Capacity vs Stiffness
 - Too Hard No Isolation
 - Too Soft Will crush to nothing
- Stiffness vs Deflection

Lightweight floors with low stiffness isolators are bouncy!

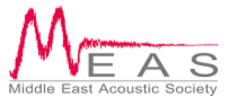
• High Damping vs Low Damping


Damping \propto Dynamic Stiffness

• Direction of the Load


Shape Factor

Quarterly Meeting Technical Presentation

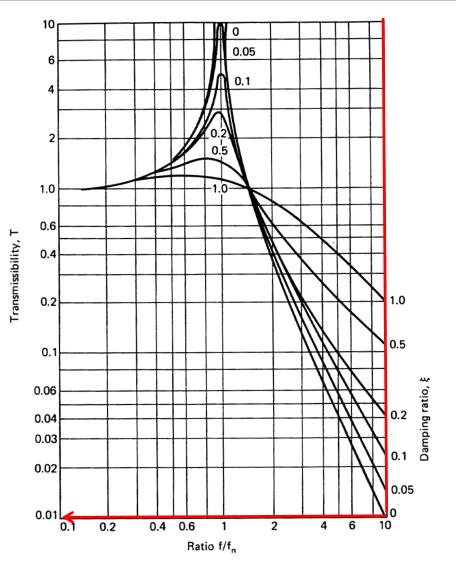

• Rubber deforms, it does not compress

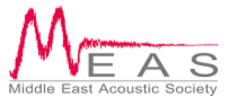
• Shape factor alters dynamic stiffness

20/06/2018

Advancing Acoustics in the Region since 2010

Worked Examples





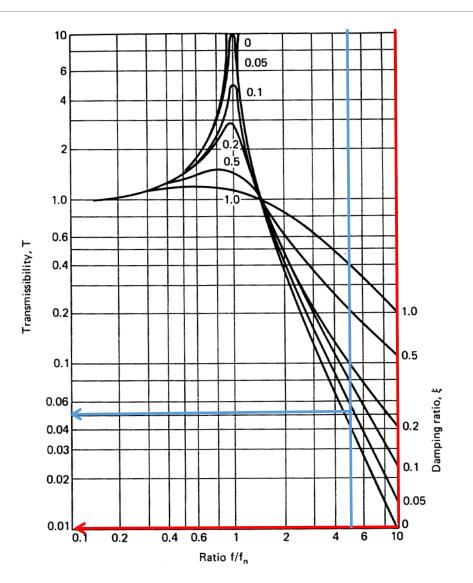
Worked Example 1a

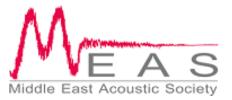
- Disturbing Frequency $[f_e] = 40.0$ Hz
- Coil Spring

dB Reduction =	<u>42.3dB</u>
Isolation =	99.2%
Transmissibility =	0.01 (1%)
Ratio $f_{\rm e}/f_{\rm n}$ =	40 / 3.5 = 11.4
Damping =	0%
Natural Frequency $[f_n]$ =	3.5Hz

Worked Example 1a

Worked Example 1b


Quarterly Meeting Technical Presentation

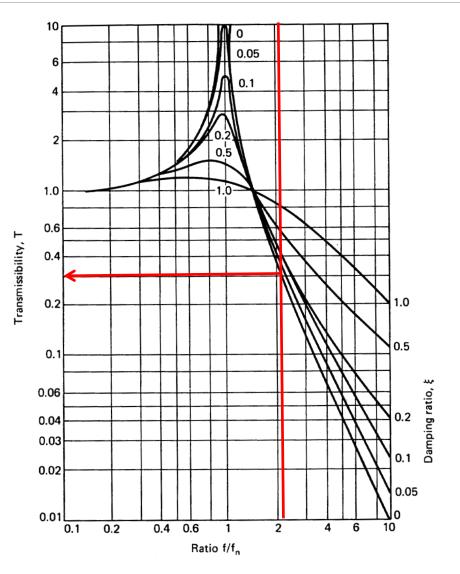

- Disturbing Frequency $[f_e] = 40.0$ Hz
- Coil Spring

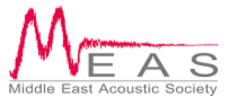
dB Reduction =	<u>42.3dB</u>
Isolation =	99.2%
Transmissibility =	0.01 (1%)
Ratio $f_{\rm e}/f_{\rm n}$ =	40 / 3.5 = 11.4
Damping =	0%
Natural Frequency $[f_n]$ =	3.5Hz

• Elastomeric Bearing —

dB Reduction =	<u>26.0dB</u>
Isolation =	95.0%
Transmissibility =	0.05 (5%)
Ratio $f_{\rm e}/f_{\rm n}$ =	40 / 8 = 5
Damping =	2-3% = 0.03
Natural Frequency $[f_n]$ =	8.0Hz

Worked Example 1b





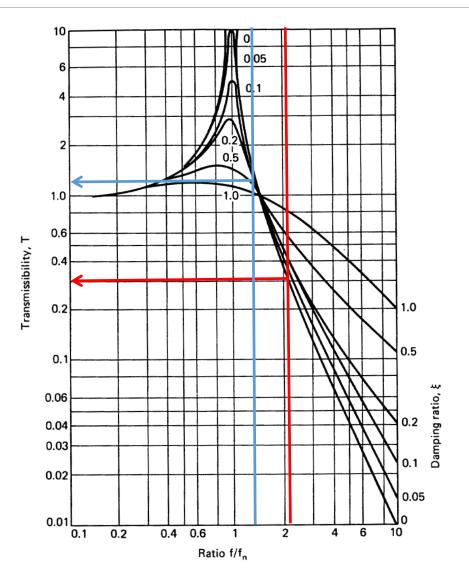
Worked Example 2a

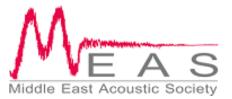
- Disturbing Frequency $[f_e] = 12.5$ Hz
- Coil Spring -


dB Reduction =	<u>10.5dB</u>
Isolation =	70.0%
Transmissibility =	0.3 (30%)
Ratio $f_{\rm e}/f_{\rm n}$ =	12.5 / 6.0 = 2.1
Damping =	0%
Natural Frequency $[f_n]$ =	6.0Hz

Worked Example 2a

Worked Example 2b

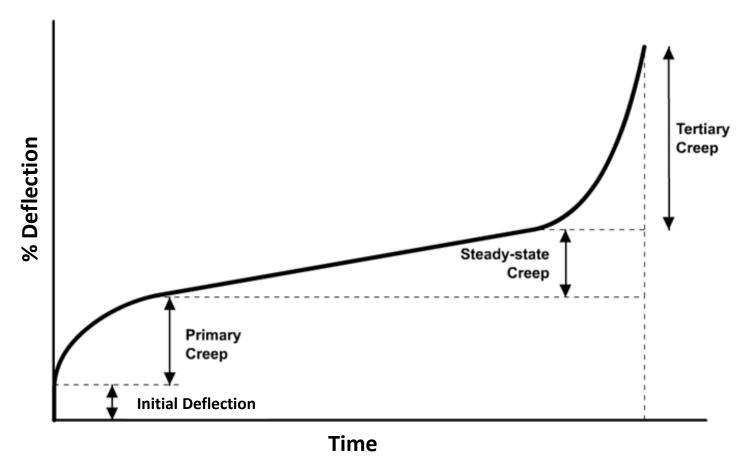

Quarterly Meeting Technical Presentation


- Disturbing Frequency $[f_e] = 12.5$ Hz
- Coil Spring -

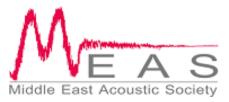
dB Reduction =		<u>10.5dB</u>
	Isolation =	70.0%
	Transmissibility =	0.3 (30%)
	Ratio $f_{\rm e}/f_{\rm n}$ =	12.5 / 6.0 = 2.1
	Damping =	0%
	Natural Frequency $[f_n]$ =	6.0Hz

• Elastomeric Bearing —

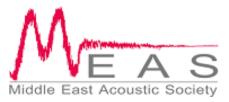

Natural Frequency $[f_n]$ =	9.0Hz	
Damping =	2-3% = 0.03	
Ratio $f_{\rm e}/f_{\rm n}$ =	12.5 / 9.0 = 1.4	
Transmissibility =	1.08 (-8%)	
Isolation =	-7.6%	
dB Reduction =	<u>-0.64dB</u>	



Worked Example 2b

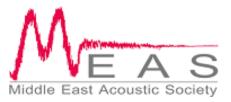


• The tendency for a material to loose strength and/or relax over time



- Creep is usually measured in Logrithmic Decriments (e.g. 10s, 100s, 1000s, 10,000s)
- So with 10mm initial deflection, 2% Creep: There would be 2% of 10mm = 0.2mm additional deflection each Log Dec of time
- 9 Log Decs = 35.2 Years
- Therefore 2% creep = 10 x 1.02⁹ = + 1.7mm
- 9% creep = **+100%** of initial deflection
- Every mm lost to creep is a loss in elasticity that will never be recovered

Recycled Elastomers


- Lower cost as they are made from waste
- Typically rubber particulate with polyurethane binder
- Only suitable for very low strain and low-dynamic applications
- Application is very grade-specific because you must ensure that the rubber is doing the work, not the adhesive
- Dynamic to Static Ratio is very high because the rubber has been vulcanised (at least) twice
- Very good at impact absorption, but not good when amplitude is very low

- These slides are not about bashing recycled elastomers
- It is important to know when they are and aren't ok to use

Isolator Type	Load Bearing Capacity	Dynamic Stiffness	Damping	Creep
Recycled Elastomer	Very Low (<1.5 N/mm²)	Typically not below 17Hz	Generally Good	10%+
Non-Recycled Elastomer	Wide Range (0.1 – 10 N/mm ²)	As low as 6Hz	Compound Specific	2 – 3%

• Recycled Elastomers are not suitable for exposure to: Lubricating Oils, Diesel/Gasoline, UV Light, Trapped Moisture

- The U.A.E. is a very cost-driven market (despite it's aspirations)
- Specifications are changed very often as a result
- This can be in pursuit of value engineering
- But most of the time, it is due to lack of understanding
- **Be better Acousticians!** Don't let manufacturers use the "it has worked before" argument (That doesn't transfer any liability from you onto them)